skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Almousa, Ayah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 20, 2026
  2. Supersolvable hyperplane arrangements and matroids are known to give rise to certain Koszul algebras, namely their Orlik–Solomon algebras and graded Varchenko–Gel’fand algebras. We explore how this interacts with group actions, particularly for the braid arrangement and the action of the symmetric group, where the Hilbert functions of the algebras and their Koszul duals are given by Stirling numbers of the first and second kinds, respectively. The corresponding symmetric group representations exhibit branching rules that interpret Stirling number recurrences, which are shown to apply to all supersolvable arrangements. They also enjoy representation stability properties that follow from Koszul duality. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Working in a polynomial ring , where is an arbitrary commutative ring with 1, we consider the th Veronese subalgebras , as well as natural ‐submodules inside . We develop and use characteristic‐free theory of Schur functors associated to ribbon skew diagrams as a tool to construct simple ‐equivariant minimal free ‐resolutions for the quotient ring and for these modules . These also lead to elegant descriptions of for all and for any pair of these modules . 
    more » « less